On the Conformal Geometry of Transverse Riemann-Lorentz Manifolds
نویسندگان
چکیده
Physical reasons suggested in [2] for the Quantum Gravity Problem lead us to study type-changing metrics on a manifold. The most interesting cases are Transverse Riemann-Lorentz Manifolds. Here we study the conformal geometry of such manifolds.
منابع مشابه
Conformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کاملLorentz Surfaces and Lorentzian CFT
The interest in string Hamiltonian system has recently been rekindled due to its application to target-space duality. In this article, we explore another direction it motivates. In Sec. 1, conformal symmetry and some algebraic structures of the system that are related to interacting strings are discussed. These lead one naturally to the study of Lorentz surfaces in Sec. 2. In contrast to the ca...
متن کاملDiscrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds
Consider a manifold constructed by identifying the boundaries of Euclidean triangles or Euclidean tetrahedra. When these form a closed topological manifold, we call such spaces piecewise flat manifolds (see Definition 1) as in [8]. Such spaces may be considered discrete analogues of Riemannian manifolds, in that their geometry can be described locally by a finite number of parameters, and the s...
متن کاملConformal maps in periodic dynamo flows and in stretch-twist suppression on Riemannian manifolds
Examples of conformal dynamo maps have been presented earlier [Phys Plasmas 14(2007)] where fast dynamos in twisted magnetic flux tubes in Riemannian manifolds were obtained. This paper shows that conformal maps, under the Floquet condition, leads to coincidence between exponential stretching or Lyapunov exponent, conformal factor of fast dynamos. Unfolding conformal dynamo maps can be obtained...
متن کاملElliptic Equations in Conformal Geometry
A conformal transformation is a diffeomorphism which preserves angles; the differential at each point is the composition of a rotation and a dilation. In its original sense, conformal geometry is the study of those geometric properties preserved under transformations of this type. This subject is deeply intertwined with complex analysis for the simple reason that any holomorphic function f(z) o...
متن کامل